Ce thème s’intéresse à tout type de matériaux : des matériaux massifs homogènes ou hétérogènes, métalliques, céramiques ou polymères, revêtus ou non. Il a comme objectif principal la détermination de leurs propriétés mécaniques à des échelles locales et globales et l’identification de leurs lois de comportement en petites et grandes déformations selon leurs propriétés. Ce thème est abordé en mettant un accent sur la relation entre la modélisation et l’expérimentation. C’est pourquoi, un premier axe concerne l’utilisation de l’indentation instrumentée pour la caractérisation mécanique des matériaux. Cette approche permet d’aborder une large variété de propriétés et donc de s’intéresser à des matériaux purement élasto-plastiques, comme les métaux et les céramiques, ou à des matériaux polymères pour lesquels l’aspect visqueux peut être pris en considération. Concernant les systèmes polymères, un accent est porté sur le développement et la vérification expérimentale de modèles de comportement et de critères de fatigue et de rupture.
Caractérisation mécanique par indentation multi-échelles.
De manière générale, on s’intéresse à la caractérisation mécanique des matériaux, principalement par indentation, avec une approche matériaux en prenant en compte divers paramètres (multiphasique, hétérogène, poreux, revêtu...) et une approche plutôt orientée vers le développement de la technique d’indentation. Toutes les échelles de mesure sont abordées, de la nano à la macro, différents modes sont utilisés (classiques, CSM et multi-cycliques) et différentes propriétés sont étudiées.
Outre la caractérisation mécanique des matériaux, on s’intéresse au développement de l’indentation instrumentée aux différentes échelles de mesure pour la détermination des propriétés mécaniques de surface. Il s’agit principalement de la dureté mais aussi du module d’élasticité, de la ténacité et des propriétés mécaniques de traction par méthodes inverses, des lois de comportement en fluage et en relaxation. Notre objectif est d’approfondir nos connaissances sur la méthodologie, ses contours et ses limites pour l’obtention de propriétés fiables et pertinentes. C’est pourquoi nous étudions une grande variété de matériaux sous formes massives aux comportements mécaniques différents (
des métaux aux céramiques), de matériaux fortement hétérogènes comme les géomatériaux (
bétons), de matériaux revêtus de films minces (< 10 μm) ou plus épais (quelque 100 μm), de structures homogène ou hétérogène ou encore des matériaux à gradient de propriétés en surface obtenus par traitements mécaniques ou thermochimiques. Cette diversité d’étude de cas nous a permis de bien progresser sur la connaissance des matériaux nouveaux, mais il reste encore des verrous scientifiques à lever comme la prise en compte de paramètres expérimentaux (rigidité de la machine, défaut de pointe...), l’effet de taille en indentation, la modélisation des propriétés mécaniques des matériaux revêtus ou à gradient et enfin la recherche de paramètres pertinents pour caractériser les matériaux fortement hétérogènes comme le sont ceux du génie-civil.